

Wild S et al. Diabetes Care, 2004;27:1047-105

CDC's Division of Diabetes Translation National Diabeter

Obesity and Early Death in the United States

- An estimated <u>300,000 deaths</u> per year may be attributable to obesity
- Obese adults have a <u>50–100%</u> increased risk of <u>premature death</u>, compared to adults with a BMI of 20 to 25
- Even an <u>extra 10–20 pounds</u> for a person of average height <u>increases</u> <u>the risk of death</u>, especially among adults aged 30–64 yrs.

10

Diabetes and Obesity

11

9

- Obesity is the <u>#1 risk factor</u> for developing type 2 diabetes mellitus (T2DM)
 - More than 1/3 of all U.S. adults are obese
 - About 12.5 million U.S. children and adolescents (aged 2 – 19 yrs.) are obese
 - As many as <u>80%</u> of type 2 diabetics are obese
 - Diabetes and obesity are so closely linked that many experts refer to them as one disease state: "<u>Diabesity</u>"

urces: Centers for Disease Control and Prevention. National Diabetes Fact Sheet, 2011; Ma Diabetes Care. 1994;17:961-969; Colditz GA et al. Ann Intern Med. 1995;122:481-486.

Two Types of Diabetes in Pregnancy

Gestational Diabetes (GDM)

- Occurs only during pregnancy and disappears not long after delivery
- <u>Even mild hyperglycemia may impact</u> pregnancy outcomes
- Associated with higher incidence of:
 - Cesarean section
 - Preterm labor
 Macrosomia
 - Macrosonna
 Shoulder dystocia or
 - injury
 - Intensive neonatal care
 Hyperbilirubinemia, and
 - Hyperomruomenna, ai
 - Preeclampsia

- Pregestational Diabetes (PGDM)
- Exists prior to pregnancy; can be either type 1 or type 2
- Poor diabetes control <u>before</u> conception/ during first trimester of pregnancy causes <u>major consequences</u> for <u>both</u> baby and mother
- Consequences for the <u>baby</u> include a <u>greater</u> <u>risk</u> for:

UNIVERSITY of MARYLAND

HOOL OF MEDICIN

- Major birth defects
- Preterm birth
 - Still birth
- Respiratory problems
 Hypoglycemia
- Hypogrycer
 Jaundice
- Later obesity and diabetes

12

ch Group et al. N Engl J Med 358(19):1991-2002

Report of the Institute of Medicine of the National Academy of Sciences *"The Weight of the Nation"*

14

<u>Pathophysiology</u> of Obesity-Related Complications: *Inflammation Hypothesis*

13

Chu SV et al. N Engl. I Med. 2008;358(14):1444.53. Photo credits: (ton & middle) UMS

Diabetes and the Offspring of the Obesity Continuum: 3 Key Questions That <u>Research</u> Must Address

- Does maternal diabetes in pregnancy set the stage for health problems for infants?
 - Vascular complications
 - Insulin resistance
 - Type 2 diabetes

its: Wikimedia Commons/Jaap Vermeulen; UMSC

- What is the link between diabetes and birth defects?
- How can we <u>improve</u> diabetic <u>pregnancy outcomes</u> for the mother, fetus, and the mature adult?

Does Maternal Diabetes Cause <u>Health Complications</u> in Offspring Later in Life?

- · Renal problems in offspring linked to maternal diabetes in pregnancy
 - <u>Reduced nephron number</u> can lead to
 - Glomerular hypertension & proteinuria
 - Activation of renin-angiotensin system
 - Rise in blood pressure & renal damage
- Cardiovascular problems in offspring linked to maternal diabetes in pregnancy
 - Altered/impaired angiogenesis can lead to vascular dysfunction
 - Endothelial dysfunction can lead to impaired vascular system development
- Maternal diabetes in pregnancy linked to <u>long-term diabetes</u>, <u>obesity</u> and insulin resistance in <u>offspring</u>

Diabetes and the Offspring of the Multi-generational Obesity <u>Continuum</u>

- <u>Babies born</u> to obese mothers are more likely to develop:
 - Obesity by age 4 yrs. old
 - Diabetes in early adulthood
 - Cardiovascular problems
- Between <u>16–33%</u> of U.S. children and adolescents are obese

thard KJ et al. JAMA. 2009;301(6):636-50; Olson CM et al. Child Obes. 2010;6(4):201-20

- Obesity most commonly begins in childhood between <u>ages 5–6</u>, and during <u>adolescence</u>
- A child who is obese between <u>ages 10–13</u> has an <u>80% chance</u> of becoming an obese adult

UNIVERSITY of MARYLAND SCHOOL OF MEDICINE

18

Obesity Links to Congenital Birth Defects: *Atlanta Birth Defects Risk Factor Surveillance Study*

Population-based case-control study of mothers who had infants in 5-counties around metropolitan Atlanta Maternal prepregnancy weight (pre-existing diabetes excluded): • Obese = $BMI \ge 30$ • Overweight = BMI 25.0-29.9 Average-weight = BMI 18.5–24.9 Findings: Infants born to obese women have higher risks than infants born to Spina bifida (OR: 3.5, CI: 1.2-10.3) Heart defects (OR: 2.0, CI: 1.2-3.4) Omphalocele (OR: 3.3, CI: 1.0-10.3) Multiple anomalies (OR: 2.0, CI: 1.0-3.8) Infants born to obese women have higher risks than infants born to overweight women • Heart defects (OR: 2.0, CI: 1.2-3.1) • Multiple anomalies (OR: 1.9, CI: 1.1-3.4) **Conclusions:** Maternal obesity & overweight linked to birth defects: spina bifida, omphalocele, heart defects and multiple anomalies UNIVERSITY of MARYLAND CHOOL OF MEDICIN kins ML, et al. Maternal obesity and risk for birth defects. Pediatrics 2003, 111:1152-1158, Photo crediti: NeuroWil

Link Between Diabetes and Birth Defects

1st daiment on	% of infants	Risk Ratio	Hyperglycemia = Rate of defects
1 st trimester HbA ₁ levels (SD above mean)	malformations (n)	interval)	 In the United States: <u>4 in 10</u> babies with a congenital heart defect die
≤ 6	3 (99)	1.0	– <u>1 in 10</u> babies with a neural tube defect die
6.1-9.0	5.2 (77)	1.7 (0.4-1.7)	• Birth defects occur in <u>6–10%</u> of newborns of diabetic mothers
9.1-12.0	4.3 (46)	1.4 (0.3-8.3)	(3% background)
12.1-15.0	38.9 (18)	12.8 (4.7-35.0)	with a birth defect caused by diabetes
>15.0	40.0 (10)	13.2 (4.3-40.4)	
Lources: Greene MF. Teratology. 19	1 989:39:225. Sheller et al. Toxicolog	1 ical Sci. 2008;105(1):166-172.	UNIVERSITY of MARYLAN SCHOOL OF MEDICINE

22

Is Hyperglycemia a Teratogen? Number of **Glucose Level NTD Rate** Resorption Embryos (mg/dl) (%) Rate (%) Nondiabetic 162 110.8 ± 18 1.25 ± 0.8 0.59 ± 0.2 Group (10) Diabetic

* Significant difference (P<0.05)

Group (10)

139

24

 $312.7 \pm 30^{*}$

 $28.45 \pm 3.9^{*}$

 $11.2 \pm 3.1*$

How Can We Improve Outcomes Among Diabetics in General?

Diabetes Control and Complications Trial (DCCT) in 1983-1993:

- Examined whether euglycemia could slow onset of diabetic kidney disease, eye disease and nerve damage
- 10-year study conducted at 29 institutes in the U.S. and Canada
- Enrolled 1,441 participants (aged 13 39 yrs.) with T1DM
- Participants randomly assigned to 2 groups:
 - Group 1: standard care
 - · Group 2: intensive glycemic control
- **Results:**
 - 50% reduced risk of kidney disease
 - 76% reduced risk of developing eve disease; 54% reduction in progression of eve disease
 - 60% reduced risk of nerve damage

Conclusion: Tight glycemic control can prevent or slow progression of UNIVERSITY of MARYLAND SCHOOL OF MEDICINE diabetes complications

Diabetes Control and Complications (DCCT) Research Group. Kidney Int. 1995;47(6):1703-20. Photo credit: Wikin

26

How Can We Improve Outcomes Among **Diabetics in General?**

- UK Prospective Diabetes Study Group (original study from 1977-1997, with follow-up study from 1998-2008)
- Conducted at 20 hospital clinics in England, Scotland and Northern Ireland Overall study enrolled over 5,000 participants (aged 25 - 65 vrs.) with T2DM; results reported in 1998 & 2008
- Smaller study looked at 1,148 participants with T2DM and hypertension; results reported in 1998
- Results: Tight glycemic control (insulin) reduced
- Any diabetes complication by 12% (1998) and 9% (2008)
- Microvascular complications by 25% (1998) and 24% (2008)
- Risk of myocardial infarction by 16% (1998) and 15% (2008)
- Results: Tight blood pressure control (ACE inhibitor or beta-blocker) reduced Risk of stroke by 44%
- Progression of retinopathy by 34% and loss of visual acuity by 47% Diabetes-associated deaths by 32%
- **Conclusion:** Tight glycemic & blood pressure control can significantly reduce incidence of diabetes-associated deaths and vascular complications

How Can We Improve Outcomes of Diabetic Pregnancies? **Glycemic Control** to Prevent Diabetes-Associated Birth Defects

	Control Group			Study Group		
Investigator	# Patients	Malformation Rate (%)	Glucose Control	# Patients	Malformation Rate (%)	Glucose Control
Pedersen et al. (1979)	284	14.1	Inadequate	363	7.4	Improved
Fuhrmann et al. (1983)	128	7.5	87.1% blood Glu readings btw 2.3-7.7 mmol/L achieved by 9.79% of patients	292	0.8	87% blood Glu readings btw 2.3-7.7 mmol/L achieved in all patients
Fuhrmann et al. (1984)	144	6.2	$HbA1c \\ \ge 10.4 \pm 0.471$	56	1.7	<i>HbA1c</i> ≤ 7.39 ± 0.49
Goldman et al. (1986)	31	9.6	HbA1c <9% in 47% of patients	44	0	HbA1c < 9% in 87% of patients
Kitzmiller et al. (1986)	53	15.1		46	2.2	
Steel et al. (1988)	65	9.2		46	2.2	
Mills et al. (1988)	279	9.0	"Late Entry"	347	4.9	"Early Entry"
Damm et al. (1989)	61	8.2	Mean HbA1c 7.3 ± 1.5	193	1	<i>HbA1c</i> 7.1 ± 1.2
Kitzmiller et al. (1991)	110	25	<i>HbA1c</i> > <i>10.6</i>	84	1.69	<i>HbA1c</i> < 7.9
Wilhoite et al. (1993)	123	6.5		62	1.6	
Source: Reece EA, Homko CJ. Clin Obstet	Gynecol. 2000;43(1):3	2-41.				

29

How Can We Improve Outcomes of Diabetic Pregnancies? Vitamin Supplements Prevent Diabetes-Associated Birth Defects

Correa et al. 2003 study:

- Infants born from 1968-1980 to metro Atlanta residents
- Population-based control study (n > 6,000 infants)
- Maternal diabetes onset before birth

rce: Correa A et al. Pediatrics. 2003;111(5 Pt 2):1146-51

Multivitamin use: 3 months prior to pregnancy through 1st trimester

Atlanta Study: Results								
Maternal Diabetes	Maternal Use of Diabetes Vitamins		OR	95% CI				
Yes	Yes	1/7	0.15	0.00-1.19				
Yes	No	15/11	<u>3.93</u>	1.79-8.63				
No	Yes	120/424	0.82	0.65-1.03				
No	No	1095/1165	Ref.					

UNIVERSITY of MARYLAND SCHOOL OF MEDICINE

Conclusion: Periconceptional use of multivitamins in diabetic mothers reduced risk of birth defects

How Have We Addressed Diabetes Management? CDC Recommendations on Folic Acid Supplements

CDC recommends:

- Women of childbearing age (15-45 yrs.) should consume 0.4 mg of folic acid daily to prevent NTDs
- Women who already have had an NTDaffected pregnancy should consume <u>4 mg of</u> <u>folic acid daily</u>, even when not planning to become pregnant
- **IOM recommends:**
 - Women should take 0.4 mg of <u>synthetic</u> folic acid daily (from fortified foods, supplements or a combination of the two), in addition to consuming dietary folate
- **U.S. Preventive Services Task Force** recommends:
- Women planning or capable of pregnancy should take a daily supplement containing <u>0.4–0.8 mg</u> of folic acid

30

Breaking the Chain: Key Components of Effective Obesity **Management in Pregnancy**

- **Dietary improvements** •
- Limiting weight gain in pregnancy
- Increasing activity levels
- Surgical intervention • (as a last resort)

Do the pregnancy weight gain standards need to change? Evidence for more personalized weight management

• <u>Methods</u>: Two retrospective cohort studies (n = 410,000 women) to determine optimal weight gain during pregnancy

- <u>Goal</u>: Optimize birth outcomes (i.e., lower risk of preeclampsia, C-section or LGA fetus)
- Optimal weight gain:
 - Prepregnancy BMI < 20 = Weight gain of 9-22 lbs.
 - Prepregnancy BMI 20-25 = Weight gain of 5-22 lbs.
 - Prepregnancy BMI 25-30 = Weight gain of < 20 lbs.
 Prepregnancy BMI 30-35 = Weight gain of < 13 lbs.
 - Prepregnancy BMI 30-35 = weight gain of < 13 lbs
 Prepregnancy BMI 35-40 = Weight gain of 0-9 lbs.
 - Prepregnancy BMI > 40 = Weight loss of 0-9 lbs.
- Conclusions:
 - For obese pregnant women, limited or no weight gain ha
 - Limited weight loss improves pregnancy outcomes only

Healthy weight during pregnancy is patient-specific maternal and fetal outcomes

les ET et al. Am J Clin Nutr. 2010;92(6):1306-15; Kiel DW et al. Obstet Gynecol. 2007;110(4):752-8; Cedergren MI. Obstet Gynecol. 2007;110(4):759-6

IOM Report on Healthy Weight Gain in Pregnancy

34

How Can We Improve Outcomes of Diabetic Pregnancies? Oral Medications for Diabetes in Pregnancy

Review of literature:

- Examined studies comparing insulin to glyburide or metformin published from 2007 – 2008
- Identified randomized, controlled trials conducted in
 - U.S. (glyburide vs. insulin)
 - India (glyburide vs. insulin)
 - Brazil (glyburide vs. insulin vs. acarbose)
- New Zealand and Australia (metformin vs. insulin)
- Participants were diagnosed with GDM
 - Results:
 - Glyburide and metformin <u>equivalent to insulin</u> in terms of pregnancy outcomes in GDM
 - Rate of congenital malformations, C-sections, and abnormal birth weight babies <u>did not differ</u> between pregnancies treated with insulin and those treated with oral agents
- <u>More intensive investigation</u> of safety and feasibility of oral agents in <u>T2DM</u> pregnancies necessary

s: Nicholson et al. Obstet Gynecol. 2009;113(1):193-205; Paglia MJ, Coustan DR. Curr Diab Rep. 2009;9(4):287-90.

Glyburide Glyburide 25 Comparison Comp

How Have We Addressed Diabetes <u>Management</u>? Insulin Delivery & Non-Insulin Therapies

- Continuous insulin delivery
 - Approximately <u>200,000</u> Americans use pump therapy An estimated 100 000 more and
 - An estimated <u>100,000</u> more are in use in other parts of the world

- Non-insulin therapies
 - For pregnant women with T1DM, <u>insulin</u> is treatment of choice
 - For pregnant women with T2DM, oral <u>hypoglycemic</u> <u>agents</u> may be effective

Bariatric Surgery for Obesity: *A Last Resort!* • <u>Reduces stomach size</u> by gastric banding or removal of a portion of the stomach

BMI

UNIVERSITY of MARYLAND

OOL OF MEDICIN

- Long-term studies show:
 - Significant long-term loss of weight (up to 8 yrs.)

 <u>20-30 kg weight loss</u> in obese patients with <u>≥ 40 kg/m²
 </u>
 - For patients with BMI of 35-40 kg/m², data supporting the superiority of surgery are inconclusive
 - Recovery from diabetes

n MK. N Engl J Med. 2009;361(5):520-1; Ma

om J et al. Diabetes Care. 2003;26(12):3230-6. Photo credit: CDC/An

- Improvements in cardiovascular risk factors
- Reduced mortality from obesity complications
- <u>>20%</u> of patients experience some complications (mostly minor)
 Postoperative mortality rates of <1% have been achieved
- · Almost no data on surgery to treat obesity in adolescents or children

38

"Prescription" for Health: <u>Prevention!</u> From the 16th U.S. Surgeon General

37

How Have We Addressed Diabetes <u>Prevention</u>? Lifestyle Intervention

Finnish Diabetes Prevention Study (DPS) in 1993 3-year study conducted at 5 centers in Finland Examined whether dietary intervention could prevent or delay onset of T2DM • • Enrolled 522 participants (aged 40 – 64 yrs.) with prediabetes Participants randomly assigned to control group or lifestyle intervention group **Results: Control group** 20% of people developed T2DM Reduced weight by 0.9 kg **Intervention group** - 9% of people developed T2DM Reduced weight by 3.5 kg **Conclusion:** Lifestyle intervention (diet, physical uccessfully prevent or delay onset of T2DM UNIVERSITY of MARYLAND

How Have We Addressed Diabetes Prevention? Lifestyle Intervention or Medication

- Diabetes Prevention Program (DPP) Research Study in 2002
- 3-year, large multicenter study conducted at 27 institutions across the United States
- Examined whether lifestyle intervention or treatment with oral diabetes drug could prevent or delay onset of T2DM
- Enrolled 3,234 participants (mean age = 55 yrs. old) overweight with prediabetes
- Participants randomly assigned to 3 groups: ٠
 - Group 1: One-on-one counseling on modest weight loss through physical dietary changes
 - Group 2: Metformin and standard care
 - Group 3: Placebo and standard care
- **Results:**
 - Group 1 risk of developing T2DM reduced by 58%

- Group 2 risk of developing T2DM reduced by 31%

Diabetes Prevention Program Research Group. N Engl J Med. 2002;346:393-403. Photo credit: CDC/Amanda Mill-

Conclusion: People at risk for developing diabetes can prevent or delay disease by losing modest weight reduction through diet & exercise or by treatment with metformin

UNIVERSITY of MARYLAND School of Medicine

Societal Strategies Against Obesity and Its Complications

Solutions are few

- **Improve quality of diet**
- · Less fats and calories
- · More fruits and vegetables
- Increase level of activity • Exercise 30 min/day, 4-5 times/wk.
- People will not change willingly
- Incentives must be provided, such as
 - Give tax breaks to the food industry for development of low-calorie, low-fat and low-cholesterol foods
 - · Promote fruits, vegetables and whole grains
 - Give health insurance breaks for people who exercise and practice healthy living
 - Make fitness a part of health care

ise from top) CDC/Dawn Arlotta; CDC/Amanda Mills; NIH/NIAID; USE

· Make fitness a part of K-12 and college education

How Have We Addressed Diabetes Prevention? Lifestyle Intervention or Medication in a High-Risk Population

of People with T2DM in 2000: 31,705,000

Est. # of People with T2DM by 2030: 79,441,000

UNIVERSITY of MARYLAND SCHOOL OF MEDICINE

- Indian Diabetes Prevention Programme (IDPP) in 2002 3-year study that enrolled 551 participants (aged 35 - 55 yrs.) with
- prediabetes Participants randomized to 4 groups:
- Group 1: control
- Group 2: lifestyle intervention **Group 3: metformin**
- Group 4: lifestyle intervention and metformi
- **Results:**
 - Group 1: 55% incidence of T2DM
 - Group 2: 39.3% incidence of T2DM (reduced risk by 28.5%)
 - Group 3: 40.5% incidence of T2DM (reduced risk by 26.4%)
 - Group 4: 39.5% incidence of T2DM (reduced risk by 28.2%)

Conclusions:

- Progression to T2DM is high in Asian Indians, but lifestyle intervention and/or metformin reduces incidence of diabetes
- No added benefit of combining lifestyle intervention and metformin

achandran A *et al. Diabetologia.* 2006;49(2):289-97; World Health Organization. Diabetes Pro diabetes/facts/world figures/en/index5.html. *Image source*: U.S. Central Intelligence Agency.

42

Final Thoughts From "The Weight of the Nation"

Featured: Emma Eggleston, MD, MPH, Director, Brigham and Women's Hospital Division of Endocrinology Pregnancy Program, Assistant Professor, Harvard Medical School Source: http://iom.edu/Reports/2009/Weight-Gain-During-Pregnancy-Reexamining-the-Guidelines.aspx

A Special Thanks to...

Peter Landless, M.B., B.Ch., M.Fam.Med., MFGP(SA), FCP(SA), FACC, FASNC

Loma Linda University School of Medicine Conference organizers & staff—especially Betty Cooper Editors at the Adventist Review—especially Sandra Blackmer

University of Maryland Baltimore Campus University of Maryland School of Medicine A Third Century

